Fission yeast condensin complex: essential roles of non-SMC subunits for condensation and Cdc2 phosphorylation of Cut3/SMC4.

نویسندگان

  • T Sutani
  • T Yuasa
  • T Tomonaga
  • N Dohmae
  • K Takio
  • M Yanagida
چکیده

The condensin complex in frog extracts, containing two SMC (structural maintenance of chromosomes) and three non-SMC subunits, promotes mitotic chromosome condensation, and its supercoiling activity increases during mitosis by Cdc2 phosphorylation. Here, we report that fission yeast has the same five-member condensin complex, each of which is essential for mitotic condensation. The condensin complex was purified and the subunits were identified by microsequencing. Cnd1, Cnd2, and Cnd3, three non-SMC subunits showing a high degree of sequence conservation to frog subunits, are essential for viability, and their gene disruption leads to a phenotype indistinguishable from that observed in cut3-477 and cut14-208, known mutations in SMC4 and SMC2-like subunits. Condensin subunits tagged with GFP were observed to alter dramatically their localization during the cell cycle, enriched in the nucleus during mitosis, but cytoplasmic during other stages. This stage-specific alteration in localization requires mitosis-specific phosphorylation of the T19 Cdc2 site in Cut3. The T19 site is phosphorylated in vitro by Cdc2 kinase and shows the maximal phosphorylation in metaphase in vivo. Its alanine substitution mutant fails to suppress the temperature-sensitive phenotype of cut3-477, and shows deficiency in condensation, probably because Cut3 T19A remains cytoplasmic. Therefore, direct Cdc2 phosphorylation of fission yeast condensin may facilitate its nuclear accumulation during mitosis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cti1/C1D interacts with condensin SMC hinge and supports the DNA repair function of condensin.

Condensin is a conserved five-subunit complex containing two SMC (structural maintenance of chromosomes) and three non-SMC subunits and plays a major role in mitotic chromosome condensation. Condensin also acts in interphase and is required for DNA repair and replication checkpoint control. We attempted to study the function of the condensin in greater detail by means of the isolation of intera...

متن کامل

Cell cycle-dependent phosphorylation, nuclear localization, and activation of human condensin.

Condensin, one of the most abundant components of mitotic chromosomes, is a conserved protein complex composed of two structural maintenance of chromosomes (SMC) subunits (SMC2- and SMC4-type) and three non-SMC subunits, and it plays an essential role in mitotic chromosome condensation. Purified condensin reconfigures DNA structure using energy provided by ATP hydrolysis. To know the regulation...

متن کامل

ATPase-dependent auto-phosphorylation of the open condensin hinge diminishes DNA binding

Condensin, which contains two structural maintenance of chromosome (SMC) subunits and three regulatory non-SMC subunits, is essential for many chromosomal functions, including mitotic chromosome condensation and segregation. The ATPase domain of the SMC subunit comprises two termini connected by a long helical domain that is interrupted by a central hinge. The role of the ATPase domain has rema...

متن کامل

A Genetic Screen for Functional Partners of Condensin in Fission Yeast

Mitotic chromosome condensation is a prerequisite for the accurate segregation of chromosomes during cell division, and the conserved condensin complex a central player of this process. However, how condensin binds chromatin and shapes mitotic chromosomes remain poorly understood. Recent genome-wide binding studies showing that in most species condensin is enriched near highly expressed genes s...

متن کامل

Condensin HEAT Subunits Required for DNA Repair, Kinetochore/Centromere Function and Ploidy Maintenance in Fission Yeast

Condensin, a central player in eukaryotic chromosomal dynamics, contains five evolutionarily-conserved subunits. Two SMC (structural maintenance of chromosomes) subunits contain ATPase, hinge, and coiled-coil domains. One non-SMC subunit is similar to bacterial kleisin, and two other non-SMC subunits contain HEAT (similar to armadillo) repeats. Here we report isolation and characterization of 2...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Genes & development

دوره 13 17  شماره 

صفحات  -

تاریخ انتشار 1999